US009317448B2

a2z United States Patent (10) Patent No.: US 9,317,448 B2
Wang et al. (45) Date of Patent: Apr. 19, 2016
(54) METHODS AND APPARATUS RELATED TO (56) References Cited
DATA PROCESSORS AND CACHES U.S. PATENT DOCUMENTS
INCORPORATED IN DATA PROCESSORS o
. . . 5,067,078 A 11/1991 Talgam et al.
(71)  Applicant: Advanced Micro Devices, Inc., 8,180,964 B1* 572012 Kohetal. ..oocoovrcriiirn. 711/118
Sunnyvale, CA (US) 2005/0138280 A1* 62005 Royer, Jr. ......... GOGF 12/0866
711/118
(72) Inventors: Zhe Wang, San Antonio, TX (US); Xie OTHER PUBLICATIONS
Yuan, State College, PA (US); Junli Gu,
Beijing (CN); Yi Xu, Beijing (CN); Samira M. Khan, Zhe Wang and Daniel A. Jimenez, “Decoupled
ShuChang Shan, Beijing (CN); Shuai Dynami.c Cache Segrpentationj” 12 pages, Proceedings of the .18th
Mu, Beijing (CN); Ting Cao, Beijing International Symposium on High Performance Computer Architec-
CN) ture (HPCA-18), Feb. 2012.
( Moinuddin K. Qureshi, Michele M. Franceschini, Ashish Jagmohan
. and Luis A. Lastras, “PreSET: Improving Performance of Phase
(73) Assignee: ADVANCED MICRO DEVICES, Change Memories by Exploiting Asymmetry in Write Times,” 12
INC., Sunnyvale, CA (US) pages, 2012, 978-1-4673-0476-4/12/$31.00(c)2012 IEEE.
Vivek Seshadri, Qnur Mutlu, Mi_chael A K(_)zuch and T(_)dd C.
(*) Notice: Subject to any disclaimer, the term of this Mowry, “The EV1cted-AddIess Filter: A U,I,uﬁed Mechamsn} to
atent is extended or adjusted under 35 Address Both Cache _Pollutlor} and Thrashing,” 12 pages, PACT" 12,
b Sep. 19-23, 2012, Minneapolis, MN, ACM 978-1-4503-1182-3/12/
U.S.C. 154(b) by 283 days. 09.
(21) Appl. No.: 13/953,835 * cited by examiner
(22) Filed: Jul. 30, 2013 Primary Examiner — Shawn X Gu
74) Att Agent, or Firm — Paul J. Pol ; Pol
(65) Prior Publication Data ((& zgssoc?:t]z esylpfe;j ,Cor ais a olansky; Polansky
US 2015/0039836 Al Feb. 5, 2015
(57) ABSTRACT
(1) Int. Cl. A cache includes a cache array and a cache controller. The
Go6l” 12/00 (2006.01) cache array has a multiple number of entries. The cache
GO6F 12/12 (2006.01) controller is coupled to the cache array, for storing new entries
Go6l’ 12/08 (2006.01) in the cache array in response to accesses by a data processor,
(52) US.CL and evicts entries from the cache array according to a cache
CPC ... GO6F 12/123 (2013.01); GO6F 12/0804 replacement policy. The cache controller includes a frequent
(2013.01); GO6F 12/12 (2013.01); GO6F writes predictor for storing frequency information indicating
127121 (2013.01); GO6F 2212/1024 (2013.01) awrite back frequency for the multiple number of entries. The
(58) Field of Classification Search cache controller selects a candidate entry for eviction based

CPC ..o GOG6F 12/0804; GOGF 12/12; GOGF
12/121-12/128
See application file for complete search history.

on both recency information and the frequency information.

20 Claims, 4 Drawing Sheets

FLAGS 320

310 oo 36 \« 2 2
1 eme | wu | rrecusnoy .

330 :
1 eme | wu | rrecusney cos

30



US 9,317,448 B2

Sheet 1 of 4

Apr. 19,2016

U.S. Patent

001
oll
@33dS HOH
1
1 8yl
& o 9¢l
AHd 13d YATIOHINOD HOLIMS ol
T o0 AHOWIN yvassod |-
~ ~ -
o7l w4 avl
ovl
INAND 1S3NDIF 119 AVHHY
e~ WALSAS ol OT]
S S
5\ A /)
r/os
ndo Ondo
2L~ -0} 40SS300%
09 ILINW



US 9,317,448 B2

Sheet 2 of 4

Apr. 19,2016

U.S. Patent

002
viva | man | w [ovL| | viva || w [ovL vLva | man | w | ovL
viva | man | w [ove| [ viva || w [ove viva | nan | w | ovL UNN
34408 viva | na | w love| | viva | o | w [ove viva | nan | w | ovL
~——1 3Em -
AENEILY) ~
1SN0y YETET viva | m | wlove| [viva | o | w [ove viva [ o1 | W [ovL| | 4z
W3LSAS OL &304
NMNE%SE viva [ nd1| w [ovL| [ viva | nan oYL viva [ nd1| W | oviL
viva | nan | w {ove| | viva || w [ove viva | man | w | ovL AN/NN
sy o ax
110 —7£2
5 8 of, MLILVIS ,E 862 [ o pez 3LY1S
7 7 7
092 067 y/\ 022
0z 0vZ N1 082 MU



US 9,317,448 B2

U.S. Patent Apr. 19,2016 Sheet 3 of 4
FLAGS 320
312 314 316 \ 3 324
e o o o o
PTAG | LRU | FREQUENCY
X
PTAG | LRU | FREQUENCY
300
412 414 416
€ e e e
TAG SET INDEX BLOCK OFFSET
420
———
| PTAG SET INDEX
T = S R =y —
2 4 426 428
400

FIG. 4




U.S. Patent Apr. 19,2016 Sheet 4 of 4 US 9,317,448 B2

STORE FREQUENCY INFORMATION INDICATING A WRITEBACK —~—510
FREQUENCY OF CORRESPONDING ENTRIES IN A CACHE ARRAY

'

PREDICT A SEGMENT SIZE FOR THE WRITEBACK FREQUENCY FOR  ~—512
THE MULTIPLE ENTRIES IN THE CACHE ARRAY

'

STORE AN INDICATION OF WHETHER EACH CORRESPONDING ENTRY  |~_514
OF THE CACHE ARRAY IS A FREQUENCY WRITTEN BACK ENTRY

'

STORE RECENCY INFORMATION FOR ALL OF THE MULTIPLE —~—516
ENTRIES OF THE CACHE ARRAY

'

SELECT A CANDIDATE ENTRY OF THE CACHE ARRAY FOREVICTION  |~—518
BASED ON BOTH THE RECENCY INFORMATION AND THE
FREQUENCY INFORMATION

'

SELECT A CANDIDATE ENTRY OF THE CACHE ARRAY FOR EVICTION  |~—522
FURTHER BASED ON A WEIGHT OF THE FREQUENCY INFORMATION
RELATIVE TO THE RECENCY INFORMATION

00

FIG. 5



US 9,317,448 B2

1

METHODS AND APPARATUS RELATED TO
DATA PROCESSORS AND CACHES
INCORPORATED IN DATA PROCESSORS

FIELD

This disclosure relates generally to data processors, and
more specifically to caches for data processors.

BACKGROUND

Consumers continue to desire computer systems with
higher performance and lower cost. To address higher perfor-
mance requirements, computer chip designers have devel-
oped data processors having multiple processor cores along
with a cache memory hierarchy on a single microprocessor
chip. The caches in the cache hierarchy increase overall per-
formance by reducing the average time required to access
frequently used instructions and data. First level (L.1) caches
in the cache hierarchy are generally placed operationally
close to a corresponding processor core. Typically, a proces-
sor core accesses its own dedicated L1 cache, while a last
level cache (LLC) may be shared between more than one
processor core and operates as the last cache between the
processor cores and off-chip memory. The off-chip memory
generally includes commercially available dynamic random
access memory (DRAM) chips such as double data rate
(DDR) synchronous DRAMs (SDRAMs), but may also
include phase change memory (PCM).

PCM is an emerging form of non-volatile memory that
provides certain advantages over other known types of
memory. For example, PCM can be implemented with mul-
tiple bits in a single cell, and the data processor can take
advantage of long-term persistent storage. Also, in contrast to
DRAM, PCM does not require refresh operations since itis a
non-volatile memory technology. More particularly, PCM
technology is based on phase change material that has an
amorphous phase having a high resistance, typically in mego-
hms, and a crystalline phase having a low resistance, typically
in kilohms. When the memory controller writes a logic zero to
amemory cell, the PCM memory applies alarge current to the
associated cells for a short duration, in order to heat the PCM
material and transform it to the amorphous phase. When the
memory controller writes a logic one to a memory cell, the
PCM memory applies a relatively smaller current to slowly
heat the associated cells. However, the smaller current is
applied to the cell for a longer duration to transform the PCM
material to the crystalline phase. Thus, when the memory
controller performs write back operations, the PCM con-
sumes significant power based on the corresponding high
programming voltage and current. The data processor also
consumes more power and takes a longer time to complete
write operations using PCM as the off-chip memory.

The cache controllers store new entries in their correspond-
ing cache arrays in response to accesses by the processor
cores. If a processor core has modified data stored in a cache
line, the cache controller determines when to write the “dirty”
cache line back to the off-chip memory according to its write
back policy. For example, the cache controller may follow a
write back on eviction policy. However, slow write back
operations could degrade the overall performance of the
microprocessor by causing the memory controller to ineffi-
ciently perform the write backs and possibly stalling the
processor core, especially for example, when using PCM
memory as the off-chip memory.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates in block diagram form a multi-core data
processor with an LL.C according to some embodiments.

10

40

45

50

55

65

2

FIG. 2 illustrates in block diagram form a portion of an
LLC that may be used to implement the LLC of FIG. 1 and an
associated write buffer according to some embodiments.

FIG. 3 illustrates a representation of the frequent writes
predictor (FWP) of FIG. 2 according to some embodiments.

FIG. 4 illustrates a mapping of an input address to entries in
the cache of FIG. 1 and the FWP of FIG. 2 according to some
embodiments.

FIG. 5 illustrates a flow diagram of a method for selecting
a candidate entry of a cache array for eviction according to
some embodiments.

In the following description, the use of the same reference
numerals in different drawings indicates similar or identical
items. Unless otherwise noted, the word “coupled” and its
associated verb forms include both direct connection and
indirect electrical connection by means known in the art, and
unless otherwise noted any description of direct connection
implies alternate embodiments using suitable forms of indi-
rect electrical connection as well.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

In one form a cache (such as, for example, an LLC)
includes a cache array and a cache controller. The cache array
has a multiple number of entries. The cache controller is
connected to the cache array, stores new entries in the cache
array in response to accesses by a data processor, and evicts
entries from the cache array according to a cache replacement
policy. A cache as described herein includes a cache control-
ler that selects a victim for eviction based not only on its
recency of use, but also based on how frequently the cache
line is written back to main memory. By considering both
recency and frequency information, the memory controller is
able to reduce overall memory bus usage, especially when
used with memory that performs slow write operations such
as PCM.

The cache controller also includes a frequent writes pre-
dictor (FWP). In some embodiments, the cache controller
adaptively partitions the cache lines of a cache array into a
frequent write back cache lines partition and a non-frequent
write back cache lines partition, and sizes each partition based
on frequency information stored by the FWP. If the FWP
predicts a size for the frequent write back cache lines partition
that is larger than the current size of the frequent write back
cache lines partition, the cache controller chooses a candidate
for eviction from the frequent write back cache lines partition.
Otherwise, the cache controller chooses a candidate for evic-
tion from the non-frequent write back cache lines partition.

FIG. 1 illustrates in block diagram form a multi-core data
processor 100 with an LL.C 120 according to some embodi-
ments. For the example shown in FIG. 1, data processor 100
generally includes a central processing unit (CPU) core 110
labeled “CPU,” and a CPU core 112 labeled “CPU,”, an LLC
120, a traffic hub 130, a high speed input/output (I/O) 136,
and a memory interface 140.

LLC 120 includes a cache array 122, and a last level cache
controller (CTL) 124. Cache controller 124 is connected to
cache array 122. In FIG. 1, LL.C 120 is a shared second level
cache (L2). In some embodiments, LL.C 120 could be at a
different level of the cache hierarchy, and may not be at the
last level.

Traffic hub 130 includes a system request queue 132 and a
crossbar switch 134. System request queue 132 is connected
to each of CPU cores 110 and 112, is connected to cache
controller 124, and has an output. Crossbar switch 134 has an
input connected to the output of system request queue 132.



US 9,317,448 B2

3
High speed I/O 136 is connected to crossbar switch 134, and
is connected to a set of high speed peripherals (not shown).

Memory interface 140 provides two DRAM channels, and
includes amemory controller 142, a DRAM controller (DCT)
144, a physical layer interface (PHY) 146, a DCT 148, and a
PHY 152. Memory controller 142 is connected to crossbar
switch 134. DCT 144 is connected to memory controller 142
for a first memory channel. PHY 146 is connected to DCT
144 for the first memory channel. DCT 148 is connected to
memory controller 142 for a second memory channel. PHY
152 is connected to DCT 148 for the second memory channel.

Cache controller 124 identifies dirty data and also deter-
mines when to write back the dirty data to main memory.
Cache controller 124 is responsible for storing recently
accessed data and evicting data according to a cache replace-
ment policy. However, in addition, cache controller 124
selects a victim for eviction based not only on its recency of
use (using, for example, an LRU algorithm), but can also
consider frequency of write back when making eviction deci-
sions. As used herein, a cache line in general, is any form of
datathat is transferred between main memory and cache array
220 in blocks of fixed size. Thus, cache controller 124 is also
capable of selecting cache lines for eviction that, for example,
CPU cores 110 and 112 accessed more recently than other
cache lines.

In operation, each of CPU cores 110 and 112 provide
memory access requests to system request queue 132. CPU
cores 110 and 112 each include an .1 cache (not shown), and
access their corresponding L1 cache to determine whether the
requested cache line has been allocated to the cache before
accessing the next lower level of the cache hierarchy.

When CPU cores 110 and 112 perform a read or write
access, the corresponding CPU core checks the [.1 cache first
to see whether the L1 cache has allocated a cache line corre-
sponding to the access address. If the cache line is present in
the L1 cache (i.e. the access “hits” in the .1 cache), the
corresponding CPU core completes the access with the L1
cache. If the access misses in the L1 cache, the L1 cache
checks the next lower levels of the cache hierarchy. CPU
cores 110 and 112 share LL.C 120, which provides the
memory for a last level of cache within the cache hierarchy.
Cache controller 124 stores new entries in cache array 122 in
response to accesses by CPU cores 110 and 112. If the address
of'the request does not match any cache entries, LL.C 120 will
indicate a cache miss. In response, cache controller 124 iden-
tifies an entry for eviction from LLC 120 using a cache
replacement policy, to make room for the data that missed in
LLC120.

LLC 120, traffic hub 130, and memory interface 140 typi-
cally form a controller known as a Northbridge (NB). System
request queue 132 synchronizes and stores accesses for dis-
patch to memory interface 140 or high speed [/O 136. Traffic
hub 130 routes transactions to LLC 120, for example,
requests from CPU cores 110 and 112, or a request from a
high speed bus agent (not shown) to data processor 100 via
high speed I/O 136. MCT 142 is adapted to access memory
locations in the address space of memory, in response to
memory access requests, and in particular, memory controller
142 sends DRAM read and write requests to DCTs 144 and
148. PHYs 146 and 152 each provide an interface for DCTs
144 and 148, respectively, to corresponding DRAM memory
locations (not shown), as indicated according to DRAM com-
patible standards.

By selecting a victim for eviction based not only on its
recency of use, but also based on how frequently the cache
line is written back to main memory, cache controller 124 can

10

15

20

25

30

35

40

45

50

55

60

65

4

reduce the overall use of the off-chip memory bus. This
advantage will be even more significant when PCM is used as
the off-chip memory.

FIG. 2 illustrates in block diagram form a portion 200 of an
LLC 210 that may be used to implement LL.C 120 of FIG. 1
and an associated write buffer 260 according to some embodi-
ments. The example in FIG. 2 shows a logical association of
LLC 210 that generally includes a cache array 220, and a
cache controller 250.

Cache array 220 includes cache lines organized in regions
of sets. Cache array 220 shows representative entries that
include most recently used (MRU) entries 230, and LRU
entries 240. Each of MRU entries 230 stores a tag 232, a field
of state bits 234 corresponding to tag 232 including a modi-
fied bit (M), a field of LRU bits 236, and a field of data bits
238. Each of LRU entries 240 stores a tag 242, a field of state
bits 244 corresponding to tag 242 including an M bit, a field
of LRU bits 246, and a field of data bits 248.

Cache controller 250 includes an FWP 252, whichis atable
that stores information to indicate the frequency of write back
for a multiple number of table entries. Cache controller 250 is
connected to cache array 220, and has an output. Write buffer
260 has an input connected to the output of cache controller
250, and an output to provide write requests to system request
queue 132.

In operation, each cache line of cache array 220 includes
tag fields, for example tags 232 and 242, to associate an entry
with a physical address. According to certain coherency pro-
tocols, each cache line includes state bits, for example state
bits 234 and 244 to indicate a particular state the cache line is
in. For example, for the “MOESI” cache coherency protocol,
state bits 234 and 244 indicate whether a cache line is modi-
fied (M), owned (O), exclusive (E), shared (S), or invalid (I).

Cache controller 124 accesses the LRU field to determine
least recently used cache lines, and actually evicts cache lines
that are least recently used when it makes room in cache array
220 for a new cache line. LRU entries 240 are candidates for
eviction from cache array 220, and write back to main
memory.

As discussed further below, cache controller 210 uses FWP
252 to determine cache lines to keep in cache array 220 based
on how frequently the cache lines are written back to main
memory. Moreover as will be explained further below, cache
controller 210 adaptively partitions the full set of cache lines
into a frequent write back cache lines partition and a non-
frequent write back cache lines partition, and right sizes each
partition, based on frequency information stored by FWP
252.

FIG. 3 illustrates a representation of a table 300 that could
be used for FWP 252 of FIG. 2 according to some embodi-
ments. Table 300 includes a set of entries, such as a represen-
tative first entry 310 and a representative last entry 330. Each
entry of table 300 includes a partial tag (PTAG) field 312,
LRU bits 314, a frequency field 316 that stores a count value,
and a flags field 320. Flags field 320 includes a set of flags,
including a representative first flag 322, and a representative
last flag 324.

Table 300 is organized as an associative memory, where
each address in cache array 220 is mapped to a certain loca-
tion of table 300. Partial tag field 312 stores a most significant
portion of the addresses stored in the tag fields of cache array
220. LRU bits 314 store recency information for the cache
lines stored in cache array 220. Frequency field 316 stores
frequency information to indicate how often cache controller
250 selects cache lines in the group indicated by partial tag
312 for write back to main memory. Each flag of flags field
320 stores information corresponding to a write back fre-



US 9,317,448 B2

5

quency for particular cache lines of cache array 220 that share
the same index and partial tag, and map to the selected loca-
tions of FWP 252.

Thus, FWP 252 not only stores coarse write back fre-
quency information for a group of cache lines indicated by a
partial tag, but also stores fine write back frequency informa-
tion for each cache line within the group. In the embodiment
shown in FIG. 3, the flag indicates whether the cache line is in
a frequent partition or a non-frequent partition. Cache con-
troller 210 advantageously uses the write back frequency
information of both cache sets and cache lines for fine tuning
the accuracy of choosing write back candidates.

In operation, for each of entries 310 through 330, a flag bit
storing a logic high indicates cache controller 250 frequently
selects the corresponding cache line for writing back to main
memory, and a flag bit storing a logic low indicates cache
controller 250 infrequently selects the corresponding cache
line for writing back to main memory. When cache controller
250 searches cache array 220 for tag 232, cache controller
250 concurrently searches FWP 252 for a corresponding par-
tial tag field 312. In some embodiments, partial tag field 312
includes 16 bits of each of the tag fields of cache array 220.
Since cache controller 250 makes predictions based on both
sets of cache lines and on individual cache lines, it conserves
area and power by matching partial tags within FWP 252,
instead of complete tags.

As part of the updating process, each corresponding bit of
frequency field 316 is initialized, for example, to a logic low.
Subsequently, for each match of a partial tag field, cache
controller 250 updates the corresponding frequency bit and
the bits of flags field 320.

In some embodiments, cache controller 250 chooses a
victim for eviction from cache array 220 based on a weight of
the frequency information relative to the recency information.
For example, cache controller 250 uses an algorithm that
applies a multiplier to the recency information for assigning a
weight to the recency information relative to the frequency
information. In particular, cache controller 210 determines a
computation interval for computing the frequency of write
back information based on the multiplier.

Cache controller 210 uses flags field 320 to adaptively
partition the full set of cache lines into a frequent write back
cache lines partition and a non-frequent write back cache
lines partition. Cache controller 210 performs an optimal
segment prediction to adapt the size of each partition based on
frequency field 316. If cache controller 210 predicts a size for
the frequent write back cache lines partition that is larger than
the current size of the frequent write back cache lines parti-
tion, the cache controller chooses a candidate for eviction
from the frequent write back cache lines partition. Otherwise,
the cache controller chooses a candidate for eviction from the
non-frequent write back cache lines partition.

FIG. 4 illustrates a mapping 400 of an input address to
entries in cache 120 and FWP 252 according to some embodi-
ments. The input address could be the address of a write miss
which requires an update of the count field in FWP 252, or the
address of a victim line that must be evicted from cache 200
based on both recency and frequency information. In FIG. 4,
a first mapping 410 indicates how cache controller 120 uses
the input address to locate data in cache array 122 and
includes a tag field 412, a set index field 414, and a block
offset field 416. Cache 120 is a set associative cache, and it
uses set index field 414 of the input address to find a set of
possible locations in cache array 220 for a matching cache
line. For example if cache array 122 stores sixteen different
cache lines for each set, it would be known as a 16-way set
associative cache. Cache controller 124 uses set index field

25

30

40

45

6

414 to locate the set in cache array 122. It then performs an
associative lookup for all entries in cache array 122 corre-
sponding to set index 414 to see if TAG field 412 matches the
tag of one of the entries in the set. If there is a match between
tag field 412 and a tag of a cache line in that set, then the
access has hit in cache 120. Ifthere is no match with any ofthe
cache lines in the set, then the access has missed in cache 120.
In the case of a cache miss, assuming cache 120 is full, cache
controller 250 searches for a cache line to evict based on both
frequency information and recency information, as discussed
above.

A second mapping 420 indicates how an address maps to
lines in FWP 252 and includes a reserved field 422, a partial
tag field 424 labeled “PTAG”, a set index field 426, and a
reserved field 428. To access FWP 252, cache controller 250
uses set index field 426 to access a corresponding set in FWP
252, and then uses partial tag field 424 to find an entry in the
set. Assuming no error, an access that has hit in cache array
220 will also hitin FWP 252. In general, cache 120 maps each
m entries in cache array 220 to n entries in FWP 252.

For example, assume m=16 and n=4. Reserved field 428
will extend to log,(m)=4 more significant bits of the input
address beyond the most significant bit of block offset field
416. Moreover, set index field 426 will extend to log,(n)=2
more significant bits of the input address beyond the most
significant bit of set index field 414.

By mapping m cache sets to n sets in FWP 252, cache 120
allows efficient lookup of frequency data using the coarse-
fine mapping described above.

FIG. 5 illustrates a flow diagram of a method 500 for
selecting a candidate entry of cache array 220 for eviction
according to some embodiments. For the example shown in
FIG. 5, action box 510 includes storing frequency informa-
tion indicating a write back frequency of corresponding
entries in a cache array. Action box 512 includes predicting a
segment size for the write back frequency for the multiple
entries in the cache array. Action box 514 includes storing an
indication of whether each corresponding entry of the cache
array is a frequently written back entry. Action box 516
includes storing recency information for all of the multiple
entries of the cache array. Action box 518 includes selecting
a candidate entry of the cache array for eviction based on both
the recency information and the frequency information.
Action box 522 includes selecting the candidate entry of the
cache array for eviction further based on a weight of the
frequency information relative to the recency information. In
some embodiments, method 500 is further characterized as
storing an indication of whether each corresponding entry of
the cache array is a frequently written back cache line.

Thus, a cache as described herein includes a cache control-
ler that selects a victim for eviction based not only on its
recency of use, but can also consider frequency of write back
when making eviction decisions. The cache controller can
also consider frequency of write back when making eviction
decisions. The cache controller as described herein further
includes a FWP that adaptively partitions the full set of cache
lines of the cache array into a frequent write back cache lines
partition and a non-frequent write back cache lines partition.
The cache controller further right sizes each partition based
on the FWP. If the FWP predicts a size for the frequent write
back cache lines partition that is larger than the current size of
the frequent write back cache lines partition, the cache con-
troller chooses a candidate for eviction from the frequent
write back cache lines partition. Otherwise, the cache con-
troller chooses a candidate for eviction from the non-frequent
write back cache lines partition. The memory controller is



US 9,317,448 B2

7

able to take advantage of both recency and frequency infor-
mation to reduce the overall overhead of memory write opera-
tions.

The functions of data processor 100 of FIG. 1, portion 200
and FWP 252 of FIG. 2, representation 300 of FIG. 3, and
address mapping 400 of FIG. 4, may be implemented with
various combinations of hardware and software. For
example, some functions of portion 200, FWP 252, represen-
tation 300, and address mapping 400, may be determined by
an operating system, firmware, or software drivers, and stored
as a table in non-volatile memory. For the example shown in
FIG. 2, cache controller 210 uses FWP 252 for storing fre-
quency information indicating a write back frequency for
multiple entries of cache array 220, where cache controller
250 selects a candidate entry for eviction based on both
recency information and the frequency information. In some
embodiments, other hardware, software, or combined hard-
ware and software implementations could be used. Some of
the software components may be stored in a computer read-
able storage medium for execution by at least one processor.
Moreover the method illustrated in FIG. 5 may also be gov-
erned by instructions that are stored in a computer readable
storage medium and that are executed by at least one proces-
sor. Each of the operations shown in FIG. 5 may correspond
to instructions stored in a non-transitory computer memory or
computer readable storage medium. In various embodiments,
the non-transitory computer readable storage medium
includes a magnetic or optical disk storage device, solid-state
storage devices such as Flash memory, or other non-volatile
memory device or devices. The computer readable instruc-
tions stored on the non-transitory computer readable storage
medium may be in source code, assembly language code,
object code, or other instruction format that is interpreted
and/or executable by one or more processors.

Moreover, the circuits of FIG. 1, FIG. 2, and FIG. 3 may be
described or represented by a computer accessible data struc-
ture in the form of a database or other data structure which can
be read by a program and used, directly or indirectly, to
fabricate integrated circuits with the circuits of FIG. 1, FIG. 2,
and FIG. 3. For example, this data structure may be a behav-
ioral-level description or register-transfer level (RTL)
description of the hardware functionality in a high level
design language (HDL) such as Verilog or VHDL. The
description may be read by a synthesis tool which may syn-
thesize the description to produce a netlist comprising a list of
gates from a synthesis library. The netlist comprises a set of
gates which also represent the functionality of the hardware
comprising integrated circuits with the circuits of FIG. 1,
FIG. 2, and FIG. 3. The netlist may then be placed and routed
to produce a data set describing geometric shapes to be
applied to masks. The masks may then be used in various
semiconductor fabrication steps to produce integrated cir-
cuits of, for example, FIG. 1, and FIG. 2. Alternatively, the
database on the computer accessible storage medium may be
the netlist (with or without the synthesis library) or the data
set, as desired, or Graphic Data System (GDS) II data.

While particular embodiments have been described, vari-
ous modifications to these embodiments will be apparent to
those skilled in the art. For example, in FIG. 2, cache array
220 of LLC 210 is logically described as operating with the
MOESI cache coherency protocol, and as having entries stor-
ing a tag, a set of state bits corresponding to the tag including
an M bit, a set of LRU bits, and a set of DATA bits. In some
embodiments, L.L.C 210 could be physically implemented, for
example, with a tags array and a separate data array. In some
embodiments, the state bits could be different bits, and LLC
210 could operate with a different cache coherency protocol.

25

40

45

65

8

Also, in the illustrated embodiments, data processor 100
includes two CPU cores 110 and 112. In some embodiments,
data processor 100 could include a different number of CPU
cores. CPU cores 110 and 112 could be other types of data
processor cores than CPU cores, such as graphics processing
unit (GPU) cores, digital signal processor (DSP) cores, video
processing cores, multi-media cores, display engines, render-
ing engines, and the like. Any combination of circuits of data
processor 100 and portion 200 of FIG. 1, FIG. 2, and FIG. 3,
respectively, for example, CPU cores 110 and 112, L1.C 120,
traffic hub 130, memory interface 140, cache array 220, and
FWP 252, could each use a common circuit design or differ-
ent circuit designs. Also, any combination of circuits of data
processor 100, and portion 200, of FIG. 1, FIG. 2, and FIG. 3,
respectively, could be formed on a single integrated circuit or
could be formed on multiple integrated circuits.

Accordingly, it is intended by the appended claims to cover
all modifications of the disclosed embodiments that fall
within the scope of the disclosed embodiments.

What is claimed is:

1. A cache comprising:

a cache array having a plurality of entries; and

a cache controller coupled to said cache array, for storing
new entries in said cache array in response to accesses by
a data processor, and evicting entries from said cache
array according to a cache replacement policy, said
cache controller comprising a frequent writes predictor
for storing frequency information indicating a writeback
frequency for said plurality of entries, wherein said
cache controller selects a candidate entry for eviction
based on both recency information and said frequency
information.

2. The cache of claim 1, wherein each of said plurality of

entries of said cache array comprises:

atag;

a plurality of state bits corresponding to said entry; and

a plurality of least recently used (LRU) bits for storing
recency information for said entry.

3. The cache of claim 1, wherein said frequent writes
predictor table comprises an associative memory having a
plurality of entries, each entry of said plurality of entries of
said associative memory corresponding to a group of entries
of'said cache array.

4. The cache of claim 3, wherein said associative memory
has a first predetermined number of sets, each corresponding
to a second predetermined number of entries of said cache
array.

5. The cache of claim 4, wherein each of said entries of said
associative memory corresponds to a cache line of'said cache
array.

6. The cache of claim 3, wherein each entry of said frequent
writes predictor table comprises:

a frequency field, for indicating how often data in said
cache array corresponding to said entry is written back
to memory; and

a flags field for indicating whether each corresponding
entry of said cache array is a frequently written back
entry.

7. The cache of claim 6, wherein said flags field further
indicates whether each corresponding entry of said cache
array is a frequently written back cache line.

8. The cache of claim 6, wherein each entry of said frequent
writes predictor table further comprises:

a partial tag field for identifying said plurality of entries of

said cache array to which said entry of said frequent
writes predictor table corresponds; and



US 9,317,448 B2

9

aplurality of LRU bits for storing recency information for
all of said plurality of entries of said cache array.

9. The cache of claim 1, wherein said cache controller
selects said candidate entry for eviction further based on a
weight of said frequency information relative to said recency
information.

10. The cache of claim 1, having an output adapted to be
coupled to an input of a write buffer coupled between the
cache and a memory controller.

11. A cache comprising:

a cache array having a plurality of entries;

a frequent writes predictor table, coupled to said cache
array, for storing frequency information indicating a
write back frequency for said plurality of entries; and

a cache controller coupled to said cache array and to said
frequent writes predictor table, for evicting entries from
said cache array based on said frequency information.

12. The cache of claim 11, wherein each entry of said
frequent writes predictor table further comprises:

10

15

apartial tag field for identifying said plurality of entries of 29

said cache array to which said entry of said frequent
writes predictor table corresponds;
aplurality of LRU bits for storing recency information for
all of said plurality of entries of said cache array;
afrequency field for indicating how often data in said cache
array corresponding to said entry is written back to
memory; and
a flags field for indicating whether each corresponding
entry of said cache array is a frequently written back
entry.
13. The cache of claim 12, wherein said cache selects a
candidate entry of said cache array for eviction based on both
said recency information and said frequency information.

25

30

10

14. The cache of claim 13, wherein said cache selects said
candidate entry for eviction further based on a weight of said
frequency information relative to said recency information.

15. The cache of claim 11, wherein said frequent writes
predictor table comprises an associative memory having a
plurality of entries, each entry of said plurality of entries of
said associative memory corresponding to multiple ones of
said plurality of entries of said cache array.

16. The cache of claim 15, wherein said associative
memory has a first predetermined number of sets, each cor-
responding to a second predetermined number of entries of
said cache array.

17. A method of selecting a candidate entry of a cache array
having a plurality of entries for eviction comprising:

storing frequency information indicating a write back fre-

quency of corresponding entries in the cache array;
storing recency information for all of said plurality of
entries of said cache array; and

selecting the candidate entry of said cache array for evic-

tion based on both said recency information and said
frequency information.

18. The method of claim 17, further comprising:

predicting a segment size for said write back frequency for

said plurality of entries in said cache array.

19. The method of claim 17 further characterized as:

storing an indication of whether each corresponding entry

of said cache array is a frequently written back entry.

20. The method of claim 17, further comprising:

selecting said candidate entry of said cache array for evic-

tion further based on a weight of said frequency infor-
mation relative to said recency information.

#* #* #* #* #*



